Human Powered Vehicle

Yousef Alanzi, Evan Bunce, Cody Chenoweth, Haley Flenner, Brent Ives, Connor Newcomer

Department of Mechanical Engineering

April 29th, 2016

Overview

- Needs and Goals
- Competition Overview
- Objectives
- Constraints
- Final Design
 - \circ Frame
 - \circ Steering
 - \circ Fairing
 - Additional Features

- Testing
 - Feature testing
 - Performance testing
- Competition Results
- Conclusions

Needs and Goals

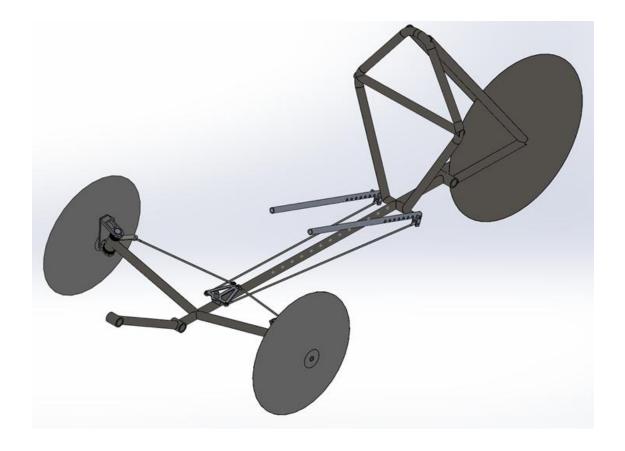
- Need statement: NAU does not have a vehicle that can compete in the American Society of Mechanical Engineers (ASME) Human-Powered Vehicle Competition (HPVC).
- Goal statement: Build a human-powered vehicle that is competitive in the HPVC.

HPVC Overview

- The HPVC is composed of three events:
 - \circ Design presentation
 - Speed event: broken up into men's and women's brackets, each with a single qualifying run leading to double-elimination races
 - Endurance challenge: a 2.5-hour continuous event in which racers attempt to complete as many laps as possible. There are right- and left-hand turns, a slalom, speed bumps, stop signs, hairpins, chicanes, and a package which must be picked up, carried, and dropped off without damage

Objectives

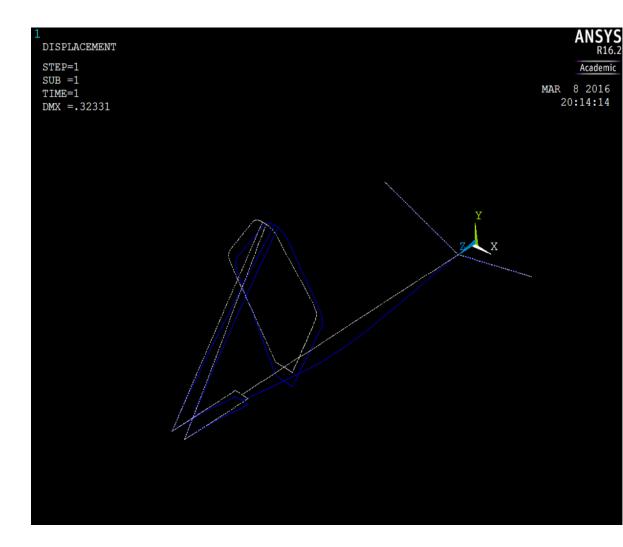
Objective	Measurement	Units
Light	Weight	Lbs
Quick	Acceleration	Ft/s ²
Fast	Top speed	Mi/hr
Inexpensive	Cost	Dollars
Easy to manufacture	Manufacturing time	Man-hours
Safe	Strength	Lbs/in ²
Aerodynamic	Aerodynamic drag coefficient (CdA)	in ²


Constraints

Factor	Limit
Turning radius	Less than 8 m
Stopping distance from 25 km/hr	Less than 6 m
Roll cage top loading yield strength	Greater than 600 lbs
Roll cage side loading yield strength	Greater than 300 lbs
Front light visibility distance	Greater than 150 m
Taillight visibility distance	Greater than 150 m

Requirements

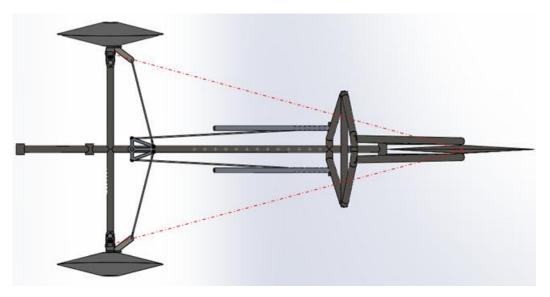
- The vehicle may not have any sharp edges on an exposed surface
- Bolts must be cut within three threads of their nut
- The vehicle must have the following:
 - Operational rearview mirrors
 - A commercially manufactured seatbelt
 - A roll bar which extends above the rider's helmeted head
 - Amber side reflectors
 - $_{\odot}$ Some method of cargo carriage and containment

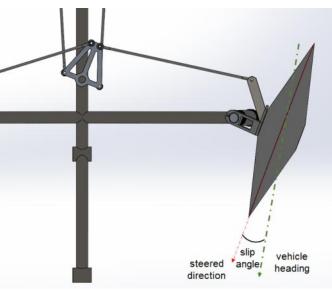

Final Design

Frame Design

- Material selection:
 - Steel chosen over aluminum due to stiffness, manufacturability, and availability
- Testing
 - ANSYS FEA simulation to simulate load testing
 - Assumed a load of 400 lb, resulting in a maximum deflection of 0.323 inches

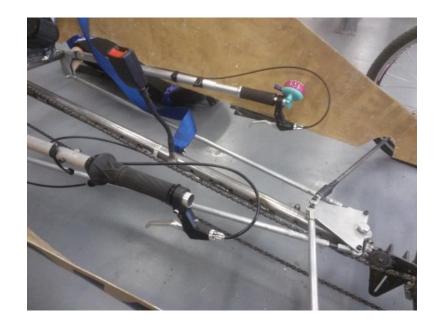
Frame Fabrication


- Manufactured to tight tolerances to ensure correct geometry and proper component fit
- Constructed entirely in-house by the team



Steering Geometry

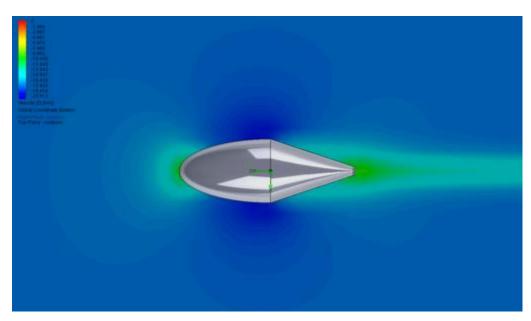
- Steering linkages based off of Ackermann geometry
- Zero-degree slip angle is assumed
- Zero camber or toe-in for minimal friction
- 12 degrees of caster for approximately 2 inches of trail


Ackermann approximation

Slip angle

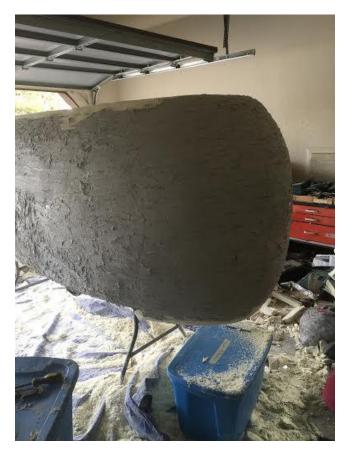
Steering and Braking

- Steering input received through handles placed at the rider's sides
- Handles house all vehicle controls
- Front brakes are mechanical discs
- Rear is a dual-pivot caliper rim brake



Brake splitter

Fairing


Original fairing design

Foam shaping

Smoothed foam shape

Fairing continued

Foam coated in body filler

Sanding the filler

Fiberglass laid over mold

Fairing continued

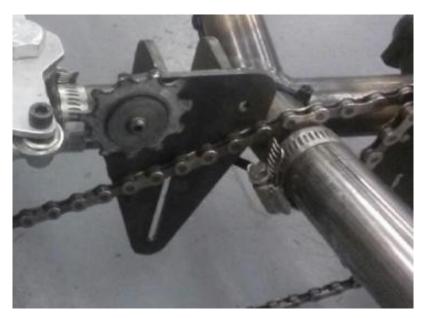
Final fiberglass panels

Additional Features

Cargo area

Front and rear lights

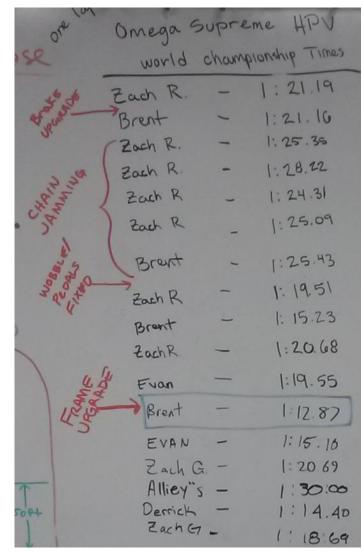
Additional Features continued


Rearview mirrors

Side reflectors

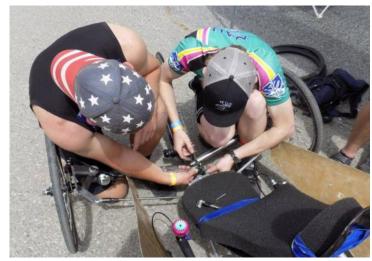
Seatbelt

Feature Testing


- Welds
- Chain routing
- Chain tension
- Idler pulleys
- Tie rods

Performance Testing

- 100 foot drag race "from a dig"
- 50 foot speed trap
- 1/4 mile lap
- Times logged in public space to encourage competition, maximum stress on vehicle
- Vehicle modifications tracked alongside times to demonstrate performance improvements



Performance log

Issues Encountered During Competition

- Chain dropped during the men's qualifying round in the sprint event
- Front end misalignment caused a tire failure in the endurance challenge and the spares did not fit the wheels
- Idler pulley nut self-loosened during the endurance challenge causing a loss of chain management

Competition Results

Category	Ranking (out of 32)
Design presentation	21
Innovation	19
Women's speed event	13
Men's speed event	20
Endurance challenge	20
Overall	21

Conclusions

- The team created a competitive vehicle that meets all requirements and constraints and which represented NAU at the 2016 ASME HPVC
- The frame of the vehicle is made of steel and is both strong and stiff enough to hold and protect any occupant
- Steering geometry is designed for stability and efficiency
- After extensive shaping and layup, the fairing was pared down to small side panels due to shipping damage
- Despite pre-competition testing, the vehicle still encountered issues at the HPVC which inhibited it from performing as hoped

Acknowledgements

- Northern Arizona University chapter of ASME
- Perry Wood faculty advisor
- W.L. Gore
- SolidWorks
- M.C. Gill Corporation

References

- "24 Hour Human Powered Distance Record Attempt." 24 Hour Human Powered Distance Record Attempt. N.p., n.d. Web. 23 Sept. 2015.
- American Society of Mechanical Engineers . n.d. <https://www.asme.org/about-asme>.
- "AtomicZombie The Warrior Recumbent Tadpole Racing Trike." AtomicZombie The Warrior Recumbent Tadpole Racing Trike. N.p., n.d. Web. 23 Sept. 2015.
- Dieter, George. Engineering Design: A Materials and Processing Approach. New York: McGraw-Hill, 1983.
- "The Recumbent Bicycle and Human Powered Vehicle Information Center." The Recumbent Bicycle and Human Powered Vehicle Information Center. N.p., n.d. Web. 23 Sept. 2015.

Questions

